Рассчитать высоту треугольника со сторонами 99, 85 и 62

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 85 + 62}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-99)(123-85)(123-62)}}{85}\normalsize = 61.5497031}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-99)(123-85)(123-62)}}{99}\normalsize = 52.8457047}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-99)(123-85)(123-62)}}{62}\normalsize = 84.3826575}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 85 и 62 равна 61.5497031
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 85 и 62 равна 52.8457047
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 85 и 62 равна 84.3826575
Ссылка на результат
?n1=99&n2=85&n3=62