Рассчитать высоту треугольника со сторонами 99, 87 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 87 + 13}{2}} \normalsize = 99.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99.5(99.5-99)(99.5-87)(99.5-13)}}{87}\normalsize = 5.33175698}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99.5(99.5-99)(99.5-87)(99.5-13)}}{99}\normalsize = 4.6854834}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99.5(99.5-99)(99.5-87)(99.5-13)}}{13}\normalsize = 35.6817582}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 87 и 13 равна 5.33175698
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 87 и 13 равна 4.6854834
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 87 и 13 равна 35.6817582
Ссылка на результат
?n1=99&n2=87&n3=13
Найти высоту треугольника со сторонами 137, 96 и 66
Найти высоту треугольника со сторонами 114, 101 и 84
Найти высоту треугольника со сторонами 142, 122 и 109
Найти высоту треугольника со сторонами 134, 125 и 10
Найти высоту треугольника со сторонами 130, 102 и 102
Найти высоту треугольника со сторонами 99, 68 и 42
Найти высоту треугольника со сторонами 114, 101 и 84
Найти высоту треугольника со сторонами 142, 122 и 109
Найти высоту треугольника со сторонами 134, 125 и 10
Найти высоту треугольника со сторонами 130, 102 и 102
Найти высоту треугольника со сторонами 99, 68 и 42