Рассчитать высоту треугольника со сторонами 99, 87 и 29

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 87 + 29}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-99)(107.5-87)(107.5-29)}}{87}\normalsize = 27.8763685}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-99)(107.5-87)(107.5-29)}}{99}\normalsize = 24.4974147}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-99)(107.5-87)(107.5-29)}}{29}\normalsize = 83.6291055}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 87 и 29 равна 27.8763685
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 87 и 29 равна 24.4974147
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 87 и 29 равна 83.6291055
Ссылка на результат
?n1=99&n2=87&n3=29