Рассчитать высоту треугольника со сторонами 99, 90 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 90 + 43}{2}} \normalsize = 116}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116(116-99)(116-90)(116-43)}}{90}\normalsize = 42.9921382}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116(116-99)(116-90)(116-43)}}{99}\normalsize = 39.083762}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116(116-99)(116-90)(116-43)}}{43}\normalsize = 89.9835452}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 90 и 43 равна 42.9921382
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 90 и 43 равна 39.083762
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 90 и 43 равна 89.9835452
Ссылка на результат
?n1=99&n2=90&n3=43
Найти высоту треугольника со сторонами 148, 101 и 74
Найти высоту треугольника со сторонами 145, 122 и 59
Найти высоту треугольника со сторонами 30, 28 и 19
Найти высоту треугольника со сторонами 52, 48 и 23
Найти высоту треугольника со сторонами 144, 119 и 69
Найти высоту треугольника со сторонами 96, 75 и 56
Найти высоту треугольника со сторонами 145, 122 и 59
Найти высоту треугольника со сторонами 30, 28 и 19
Найти высоту треугольника со сторонами 52, 48 и 23
Найти высоту треугольника со сторонами 144, 119 и 69
Найти высоту треугольника со сторонами 96, 75 и 56