Рассчитать высоту треугольника со сторонами 99, 94 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 94 + 9}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-99)(101-94)(101-9)}}{94}\normalsize = 7.67398172}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-99)(101-94)(101-9)}}{99}\normalsize = 7.28640689}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-99)(101-94)(101-9)}}{9}\normalsize = 80.1504758}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 94 и 9 равна 7.67398172
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 94 и 9 равна 7.28640689
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 94 и 9 равна 80.1504758
Ссылка на результат
?n1=99&n2=94&n3=9
Найти высоту треугольника со сторонами 133, 120 и 102
Найти высоту треугольника со сторонами 122, 121 и 87
Найти высоту треугольника со сторонами 141, 89 и 86
Найти высоту треугольника со сторонами 145, 110 и 95
Найти высоту треугольника со сторонами 144, 129 и 94
Найти высоту треугольника со сторонами 42, 27 и 17
Найти высоту треугольника со сторонами 122, 121 и 87
Найти высоту треугольника со сторонами 141, 89 и 86
Найти высоту треугольника со сторонами 145, 110 и 95
Найти высоту треугольника со сторонами 144, 129 и 94
Найти высоту треугольника со сторонами 42, 27 и 17