Рассчитать высоту треугольника со сторонами 99, 99 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 99 + 64}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-99)(131-99)(131-64)}}{99}\normalsize = 60.5644571}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-99)(131-99)(131-64)}}{99}\normalsize = 60.5644571}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-99)(131-99)(131-64)}}{64}\normalsize = 93.6856446}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 99 и 64 равна 60.5644571
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 99 и 64 равна 60.5644571
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 99 и 64 равна 93.6856446
Ссылка на результат
?n1=99&n2=99&n3=64
Найти высоту треугольника со сторонами 92, 72 и 25
Найти высоту треугольника со сторонами 140, 112 и 29
Найти высоту треугольника со сторонами 93, 65 и 52
Найти высоту треугольника со сторонами 103, 100 и 94
Найти высоту треугольника со сторонами 111, 76 и 58
Найти высоту треугольника со сторонами 129, 115 и 45
Найти высоту треугольника со сторонами 140, 112 и 29
Найти высоту треугольника со сторонами 93, 65 и 52
Найти высоту треугольника со сторонами 103, 100 и 94
Найти высоту треугольника со сторонами 111, 76 и 58
Найти высоту треугольника со сторонами 129, 115 и 45