Рассчитать высоту треугольника со сторонами 100, 85 и 79

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 85 + 79}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-100)(132-85)(132-79)}}{85}\normalsize = 76.3237831}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-100)(132-85)(132-79)}}{100}\normalsize = 64.8752156}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-100)(132-85)(132-79)}}{79}\normalsize = 82.1205261}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 85 и 79 равна 76.3237831
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 85 и 79 равна 64.8752156
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 85 и 79 равна 82.1205261
Ссылка на результат
?n1=100&n2=85&n3=79