Рассчитать высоту треугольника со сторонами 100, 88 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 88 + 70}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-100)(129-88)(129-70)}}{88}\normalsize = 68.3689817}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-100)(129-88)(129-70)}}{100}\normalsize = 60.1647039}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-100)(129-88)(129-70)}}{70}\normalsize = 85.9495771}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 88 и 70 равна 68.3689817
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 88 и 70 равна 60.1647039
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 88 и 70 равна 85.9495771
Ссылка на результат
?n1=100&n2=88&n3=70
Найти высоту треугольника со сторонами 87, 56 и 37
Найти высоту треугольника со сторонами 121, 104 и 97
Найти высоту треугольника со сторонами 106, 97 и 47
Найти высоту треугольника со сторонами 84, 77 и 49
Найти высоту треугольника со сторонами 129, 116 и 49
Найти высоту треугольника со сторонами 107, 97 и 55
Найти высоту треугольника со сторонами 121, 104 и 97
Найти высоту треугольника со сторонами 106, 97 и 47
Найти высоту треугольника со сторонами 84, 77 и 49
Найти высоту треугольника со сторонами 129, 116 и 49
Найти высоту треугольника со сторонами 107, 97 и 55