Рассчитать высоту треугольника со сторонами 101, 72 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 72 + 32}{2}} \normalsize = 102.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102.5(102.5-101)(102.5-72)(102.5-32)}}{72}\normalsize = 15.971641}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102.5(102.5-101)(102.5-72)(102.5-32)}}{101}\normalsize = 11.3857243}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102.5(102.5-101)(102.5-72)(102.5-32)}}{32}\normalsize = 35.9361922}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 72 и 32 равна 15.971641
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 72 и 32 равна 11.3857243
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 72 и 32 равна 35.9361922
Ссылка на результат
?n1=101&n2=72&n3=32
Найти высоту треугольника со сторонами 89, 53 и 37
Найти высоту треугольника со сторонами 69, 58 и 48
Найти высоту треугольника со сторонами 88, 65 и 25
Найти высоту треугольника со сторонами 147, 135 и 69
Найти высоту треугольника со сторонами 128, 95 и 56
Найти высоту треугольника со сторонами 22, 22 и 5
Найти высоту треугольника со сторонами 69, 58 и 48
Найти высоту треугольника со сторонами 88, 65 и 25
Найти высоту треугольника со сторонами 147, 135 и 69
Найти высоту треугольника со сторонами 128, 95 и 56
Найти высоту треугольника со сторонами 22, 22 и 5