Рассчитать высоту треугольника со сторонами 101, 75 и 68

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 75 + 68}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-101)(122-75)(122-68)}}{75}\normalsize = 67.9992471}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-101)(122-75)(122-68)}}{101}\normalsize = 50.4944904}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-101)(122-75)(122-68)}}{68}\normalsize = 74.9991695}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 75 и 68 равна 67.9992471
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 75 и 68 равна 50.4944904
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 75 и 68 равна 74.9991695
Ссылка на результат
?n1=101&n2=75&n3=68