Рассчитать высоту треугольника со сторонами 101, 81 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 81 + 26}{2}} \normalsize = 104}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104(104-101)(104-81)(104-26)}}{81}\normalsize = 18.4728325}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104(104-101)(104-81)(104-26)}}{101}\normalsize = 14.8148459}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104(104-101)(104-81)(104-26)}}{26}\normalsize = 57.5499783}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 81 и 26 равна 18.4728325
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 81 и 26 равна 14.8148459
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 81 и 26 равна 57.5499783
Ссылка на результат
?n1=101&n2=81&n3=26
Найти высоту треугольника со сторонами 61, 61 и 9
Найти высоту треугольника со сторонами 98, 94 и 60
Найти высоту треугольника со сторонами 80, 68 и 30
Найти высоту треугольника со сторонами 100, 86 и 61
Найти высоту треугольника со сторонами 102, 98 и 35
Найти высоту треугольника со сторонами 119, 85 и 57
Найти высоту треугольника со сторонами 98, 94 и 60
Найти высоту треугольника со сторонами 80, 68 и 30
Найти высоту треугольника со сторонами 100, 86 и 61
Найти высоту треугольника со сторонами 102, 98 и 35
Найти высоту треугольника со сторонами 119, 85 и 57