Рассчитать высоту треугольника со сторонами 101, 83 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 83 + 54}{2}} \normalsize = 119}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119(119-101)(119-83)(119-54)}}{83}\normalsize = 53.9472816}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119(119-101)(119-83)(119-54)}}{101}\normalsize = 44.3329146}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119(119-101)(119-83)(119-54)}}{54}\normalsize = 82.9189698}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 83 и 54 равна 53.9472816
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 83 и 54 равна 44.3329146
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 83 и 54 равна 82.9189698
Ссылка на результат
?n1=101&n2=83&n3=54
Найти высоту треугольника со сторонами 127, 93 и 39
Найти высоту треугольника со сторонами 146, 115 и 58
Найти высоту треугольника со сторонами 98, 98 и 59
Найти высоту треугольника со сторонами 76, 73 и 35
Найти высоту треугольника со сторонами 79, 68 и 40
Найти высоту треугольника со сторонами 114, 108 и 38
Найти высоту треугольника со сторонами 146, 115 и 58
Найти высоту треугольника со сторонами 98, 98 и 59
Найти высоту треугольника со сторонами 76, 73 и 35
Найти высоту треугольника со сторонами 79, 68 и 40
Найти высоту треугольника со сторонами 114, 108 и 38