Рассчитать высоту треугольника со сторонами 101, 90 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 90 + 58}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-101)(124.5-90)(124.5-58)}}{90}\normalsize = 57.5740079}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-101)(124.5-90)(124.5-58)}}{101}\normalsize = 51.3035714}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-101)(124.5-90)(124.5-58)}}{58}\normalsize = 89.3389778}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 90 и 58 равна 57.5740079
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 90 и 58 равна 51.3035714
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 90 и 58 равна 89.3389778
Ссылка на результат
?n1=101&n2=90&n3=58
Найти высоту треугольника со сторонами 72, 70 и 25
Найти высоту треугольника со сторонами 49, 31 и 24
Найти высоту треугольника со сторонами 45, 34 и 20
Найти высоту треугольника со сторонами 142, 135 и 90
Найти высоту треугольника со сторонами 138, 131 и 81
Найти высоту треугольника со сторонами 142, 77 и 71
Найти высоту треугольника со сторонами 49, 31 и 24
Найти высоту треугольника со сторонами 45, 34 и 20
Найти высоту треугольника со сторонами 142, 135 и 90
Найти высоту треугольника со сторонами 138, 131 и 81
Найти высоту треугольника со сторонами 142, 77 и 71