Рассчитать высоту треугольника со сторонами 101, 94 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 94 + 79}{2}} \normalsize = 137}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137(137-101)(137-94)(137-79)}}{94}\normalsize = 74.6211436}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137(137-101)(137-94)(137-79)}}{101}\normalsize = 69.4493812}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137(137-101)(137-94)(137-79)}}{79}\normalsize = 88.7897152}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 94 и 79 равна 74.6211436
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 94 и 79 равна 69.4493812
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 94 и 79 равна 88.7897152
Ссылка на результат
?n1=101&n2=94&n3=79
Найти высоту треугольника со сторонами 149, 135 и 61
Найти высоту треугольника со сторонами 81, 49 и 42
Найти высоту треугольника со сторонами 83, 68 и 40
Найти высоту треугольника со сторонами 71, 52 и 47
Найти высоту треугольника со сторонами 128, 125 и 37
Найти высоту треугольника со сторонами 125, 120 и 59
Найти высоту треугольника со сторонами 81, 49 и 42
Найти высоту треугольника со сторонами 83, 68 и 40
Найти высоту треугольника со сторонами 71, 52 и 47
Найти высоту треугольника со сторонами 128, 125 и 37
Найти высоту треугольника со сторонами 125, 120 и 59