Рассчитать высоту треугольника со сторонами 102, 100 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 100 + 70}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-102)(136-100)(136-70)}}{100}\normalsize = 66.2921534}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-102)(136-100)(136-70)}}{102}\normalsize = 64.9923072}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-102)(136-100)(136-70)}}{70}\normalsize = 94.7030763}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 100 и 70 равна 66.2921534
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 100 и 70 равна 64.9923072
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 100 и 70 равна 94.7030763
Ссылка на результат
?n1=102&n2=100&n3=70
Найти высоту треугольника со сторонами 112, 95 и 39
Найти высоту треугольника со сторонами 90, 70 и 54
Найти высоту треугольника со сторонами 72, 66 и 63
Найти высоту треугольника со сторонами 113, 93 и 69
Найти высоту треугольника со сторонами 141, 124 и 83
Найти высоту треугольника со сторонами 81, 80 и 75
Найти высоту треугольника со сторонами 90, 70 и 54
Найти высоту треугольника со сторонами 72, 66 и 63
Найти высоту треугольника со сторонами 113, 93 и 69
Найти высоту треугольника со сторонами 141, 124 и 83
Найти высоту треугольника со сторонами 81, 80 и 75