Рассчитать высоту треугольника со сторонами 102, 101 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 101 + 26}{2}} \normalsize = 114.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114.5(114.5-102)(114.5-101)(114.5-26)}}{101}\normalsize = 25.8943427}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114.5(114.5-102)(114.5-101)(114.5-26)}}{102}\normalsize = 25.6404766}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114.5(114.5-102)(114.5-101)(114.5-26)}}{26}\normalsize = 100.589562}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 101 и 26 равна 25.8943427
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 101 и 26 равна 25.6404766
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 101 и 26 равна 100.589562
Ссылка на результат
?n1=102&n2=101&n3=26
Найти высоту треугольника со сторонами 145, 142 и 11
Найти высоту треугольника со сторонами 137, 115 и 45
Найти высоту треугольника со сторонами 61, 50 и 19
Найти высоту треугольника со сторонами 138, 132 и 129
Найти высоту треугольника со сторонами 148, 121 и 36
Найти высоту треугольника со сторонами 130, 80 и 58
Найти высоту треугольника со сторонами 137, 115 и 45
Найти высоту треугольника со сторонами 61, 50 и 19
Найти высоту треугольника со сторонами 138, 132 и 129
Найти высоту треугольника со сторонами 148, 121 и 36
Найти высоту треугольника со сторонами 130, 80 и 58