Рассчитать высоту треугольника со сторонами 102, 55 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 55 + 51}{2}} \normalsize = 104}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104(104-102)(104-55)(104-51)}}{55}\normalsize = 26.7260606}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104(104-102)(104-55)(104-51)}}{102}\normalsize = 14.4111111}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104(104-102)(104-55)(104-51)}}{51}\normalsize = 28.8222222}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 55 и 51 равна 26.7260606
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 55 и 51 равна 14.4111111
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 55 и 51 равна 28.8222222
Ссылка на результат
?n1=102&n2=55&n3=51
Найти высоту треугольника со сторонами 81, 77 и 54
Найти высоту треугольника со сторонами 76, 39 и 39
Найти высоту треугольника со сторонами 149, 112 и 102
Найти высоту треугольника со сторонами 125, 100 и 64
Найти высоту треугольника со сторонами 101, 61 и 46
Найти высоту треугольника со сторонами 132, 131 и 62
Найти высоту треугольника со сторонами 76, 39 и 39
Найти высоту треугольника со сторонами 149, 112 и 102
Найти высоту треугольника со сторонами 125, 100 и 64
Найти высоту треугольника со сторонами 101, 61 и 46
Найти высоту треугольника со сторонами 132, 131 и 62