Рассчитать высоту треугольника со сторонами 102, 62 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 62 + 52}{2}} \normalsize = 108}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108(108-102)(108-62)(108-52)}}{62}\normalsize = 41.6772196}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108(108-102)(108-62)(108-52)}}{102}\normalsize = 25.3332119}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108(108-102)(108-62)(108-52)}}{52}\normalsize = 49.6920695}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 62 и 52 равна 41.6772196
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 62 и 52 равна 25.3332119
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 62 и 52 равна 49.6920695
Ссылка на результат
?n1=102&n2=62&n3=52
Найти высоту треугольника со сторонами 141, 110 и 74
Найти высоту треугольника со сторонами 124, 75 и 64
Найти высоту треугольника со сторонами 121, 91 и 75
Найти высоту треугольника со сторонами 109, 93 и 54
Найти высоту треугольника со сторонами 73, 64 и 53
Найти высоту треугольника со сторонами 122, 102 и 27
Найти высоту треугольника со сторонами 124, 75 и 64
Найти высоту треугольника со сторонами 121, 91 и 75
Найти высоту треугольника со сторонами 109, 93 и 54
Найти высоту треугольника со сторонами 73, 64 и 53
Найти высоту треугольника со сторонами 122, 102 и 27