Рассчитать высоту треугольника со сторонами 102, 68 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 68 + 39}{2}} \normalsize = 104.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104.5(104.5-102)(104.5-68)(104.5-39)}}{68}\normalsize = 23.2442916}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104.5(104.5-102)(104.5-68)(104.5-39)}}{102}\normalsize = 15.4961944}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104.5(104.5-102)(104.5-68)(104.5-39)}}{39}\normalsize = 40.5285084}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 68 и 39 равна 23.2442916
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 68 и 39 равна 15.4961944
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 68 и 39 равна 40.5285084
Ссылка на результат
?n1=102&n2=68&n3=39
Найти высоту треугольника со сторонами 141, 122 и 25
Найти высоту треугольника со сторонами 150, 150 и 21
Найти высоту треугольника со сторонами 132, 103 и 90
Найти высоту треугольника со сторонами 142, 126 и 31
Найти высоту треугольника со сторонами 110, 104 и 80
Найти высоту треугольника со сторонами 141, 98 и 50
Найти высоту треугольника со сторонами 150, 150 и 21
Найти высоту треугольника со сторонами 132, 103 и 90
Найти высоту треугольника со сторонами 142, 126 и 31
Найти высоту треугольника со сторонами 110, 104 и 80
Найти высоту треугольника со сторонами 141, 98 и 50