Рассчитать высоту треугольника со сторонами 102, 72 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 72 + 56}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-102)(115-72)(115-56)}}{72}\normalsize = 54.0976412}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-102)(115-72)(115-56)}}{102}\normalsize = 38.1865703}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-102)(115-72)(115-56)}}{56}\normalsize = 69.5541101}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 72 и 56 равна 54.0976412
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 72 и 56 равна 38.1865703
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 72 и 56 равна 69.5541101
Ссылка на результат
?n1=102&n2=72&n3=56
Найти высоту треугольника со сторонами 124, 88 и 40
Найти высоту треугольника со сторонами 134, 122 и 87
Найти высоту треугольника со сторонами 102, 76 и 64
Найти высоту треугольника со сторонами 84, 63 и 58
Найти высоту треугольника со сторонами 139, 113 и 105
Найти высоту треугольника со сторонами 137, 87 и 69
Найти высоту треугольника со сторонами 134, 122 и 87
Найти высоту треугольника со сторонами 102, 76 и 64
Найти высоту треугольника со сторонами 84, 63 и 58
Найти высоту треугольника со сторонами 139, 113 и 105
Найти высоту треугольника со сторонами 137, 87 и 69