Рассчитать высоту треугольника со сторонами 102, 76 и 68

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 76 + 68}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-102)(123-76)(123-68)}}{76}\normalsize = 67.9999949}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-102)(123-76)(123-68)}}{102}\normalsize = 50.6666629}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-102)(123-76)(123-68)}}{68}\normalsize = 75.9999943}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 76 и 68 равна 67.9999949
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 76 и 68 равна 50.6666629
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 76 и 68 равна 75.9999943
Ссылка на результат
?n1=102&n2=76&n3=68