Рассчитать высоту треугольника со сторонами 102, 95 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 95 + 16}{2}} \normalsize = 106.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106.5(106.5-102)(106.5-95)(106.5-16)}}{95}\normalsize = 14.8682776}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106.5(106.5-102)(106.5-95)(106.5-16)}}{102}\normalsize = 13.8479056}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106.5(106.5-102)(106.5-95)(106.5-16)}}{16}\normalsize = 88.2803982}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 95 и 16 равна 14.8682776
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 95 и 16 равна 13.8479056
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 95 и 16 равна 88.2803982
Ссылка на результат
?n1=102&n2=95&n3=16
Найти высоту треугольника со сторонами 138, 107 и 106
Найти высоту треугольника со сторонами 76, 71 и 52
Найти высоту треугольника со сторонами 52, 29 и 26
Найти высоту треугольника со сторонами 129, 129 и 104
Найти высоту треугольника со сторонами 127, 119 и 32
Найти высоту треугольника со сторонами 141, 95 и 66
Найти высоту треугольника со сторонами 76, 71 и 52
Найти высоту треугольника со сторонами 52, 29 и 26
Найти высоту треугольника со сторонами 129, 129 и 104
Найти высоту треугольника со сторонами 127, 119 и 32
Найти высоту треугольника со сторонами 141, 95 и 66