Рассчитать высоту треугольника со сторонами 102, 98 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 98 + 28}{2}} \normalsize = 114}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114(114-102)(114-98)(114-28)}}{98}\normalsize = 27.999881}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114(114-102)(114-98)(114-28)}}{102}\normalsize = 26.9018465}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114(114-102)(114-98)(114-28)}}{28}\normalsize = 97.9995835}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 98 и 28 равна 27.999881
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 98 и 28 равна 26.9018465
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 98 и 28 равна 97.9995835
Ссылка на результат
?n1=102&n2=98&n3=28
Найти высоту треугольника со сторонами 121, 110 и 92
Найти высоту треугольника со сторонами 59, 49 и 44
Найти высоту треугольника со сторонами 99, 66 и 44
Найти высоту треугольника со сторонами 127, 123 и 80
Найти высоту треугольника со сторонами 139, 94 и 54
Найти высоту треугольника со сторонами 127, 93 и 84
Найти высоту треугольника со сторонами 59, 49 и 44
Найти высоту треугольника со сторонами 99, 66 и 44
Найти высоту треугольника со сторонами 127, 123 и 80
Найти высоту треугольника со сторонами 139, 94 и 54
Найти высоту треугольника со сторонами 127, 93 и 84