Рассчитать высоту треугольника со сторонами 103, 100 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 100 + 55}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-103)(129-100)(129-55)}}{100}\normalsize = 53.6569995}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-103)(129-100)(129-55)}}{103}\normalsize = 52.0941743}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-103)(129-100)(129-55)}}{55}\normalsize = 97.558181}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 100 и 55 равна 53.6569995
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 100 и 55 равна 52.0941743
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 100 и 55 равна 97.558181
Ссылка на результат
?n1=103&n2=100&n3=55
Найти высоту треугольника со сторонами 102, 83 и 72
Найти высоту треугольника со сторонами 95, 73 и 71
Найти высоту треугольника со сторонами 105, 75 и 48
Найти высоту треугольника со сторонами 144, 133 и 81
Найти высоту треугольника со сторонами 83, 74 и 61
Найти высоту треугольника со сторонами 59, 44 и 26
Найти высоту треугольника со сторонами 95, 73 и 71
Найти высоту треугольника со сторонами 105, 75 и 48
Найти высоту треугольника со сторонами 144, 133 и 81
Найти высоту треугольника со сторонами 83, 74 и 61
Найти высоту треугольника со сторонами 59, 44 и 26