Рассчитать высоту треугольника со сторонами 103, 86 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 86 + 47}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-103)(118-86)(118-47)}}{86}\normalsize = 46.6361125}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-103)(118-86)(118-47)}}{103}\normalsize = 38.93889}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-103)(118-86)(118-47)}}{47}\normalsize = 85.3341633}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 86 и 47 равна 46.6361125
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 86 и 47 равна 38.93889
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 86 и 47 равна 85.3341633
Ссылка на результат
?n1=103&n2=86&n3=47
Найти высоту треугольника со сторонами 118, 99 и 85
Найти высоту треугольника со сторонами 136, 125 и 32
Найти высоту треугольника со сторонами 124, 91 и 34
Найти высоту треугольника со сторонами 122, 99 и 49
Найти высоту треугольника со сторонами 131, 103 и 63
Найти высоту треугольника со сторонами 147, 139 и 39
Найти высоту треугольника со сторонами 136, 125 и 32
Найти высоту треугольника со сторонами 124, 91 и 34
Найти высоту треугольника со сторонами 122, 99 и 49
Найти высоту треугольника со сторонами 131, 103 и 63
Найти высоту треугольника со сторонами 147, 139 и 39