Рассчитать высоту треугольника со сторонами 103, 91 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 91 + 26}{2}} \normalsize = 110}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110(110-103)(110-91)(110-26)}}{91}\normalsize = 24.364102}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110(110-103)(110-91)(110-26)}}{103}\normalsize = 21.5255659}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110(110-103)(110-91)(110-26)}}{26}\normalsize = 85.2743571}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 91 и 26 равна 24.364102
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 91 и 26 равна 21.5255659
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 91 и 26 равна 85.2743571
Ссылка на результат
?n1=103&n2=91&n3=26
Найти высоту треугольника со сторонами 148, 135 и 48
Найти высоту треугольника со сторонами 149, 144 и 102
Найти высоту треугольника со сторонами 119, 80 и 71
Найти высоту треугольника со сторонами 47, 38 и 22
Найти высоту треугольника со сторонами 112, 85 и 47
Найти высоту треугольника со сторонами 92, 90 и 31
Найти высоту треугольника со сторонами 149, 144 и 102
Найти высоту треугольника со сторонами 119, 80 и 71
Найти высоту треугольника со сторонами 47, 38 и 22
Найти высоту треугольника со сторонами 112, 85 и 47
Найти высоту треугольника со сторонами 92, 90 и 31