Рассчитать высоту треугольника со сторонами 104, 83 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 83 + 75}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-104)(131-83)(131-75)}}{83}\normalsize = 74.2991876}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-104)(131-83)(131-75)}}{104}\normalsize = 59.2964671}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-104)(131-83)(131-75)}}{75}\normalsize = 82.2244343}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 83 и 75 равна 74.2991876
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 83 и 75 равна 59.2964671
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 83 и 75 равна 82.2244343
Ссылка на результат
?n1=104&n2=83&n3=75
Найти высоту треугольника со сторонами 76, 58 и 29
Найти высоту треугольника со сторонами 103, 69 и 43
Найти высоту треугольника со сторонами 131, 101 и 96
Найти высоту треугольника со сторонами 125, 86 и 58
Найти высоту треугольника со сторонами 130, 103 и 52
Найти высоту треугольника со сторонами 146, 145 и 32
Найти высоту треугольника со сторонами 103, 69 и 43
Найти высоту треугольника со сторонами 131, 101 и 96
Найти высоту треугольника со сторонами 125, 86 и 58
Найти высоту треугольника со сторонами 130, 103 и 52
Найти высоту треугольника со сторонами 146, 145 и 32