Рассчитать высоту треугольника со сторонами 104, 84 и 39

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 84 + 39}{2}} \normalsize = 113.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113.5(113.5-104)(113.5-84)(113.5-39)}}{84}\normalsize = 36.6521611}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113.5(113.5-104)(113.5-84)(113.5-39)}}{104}\normalsize = 29.6036686}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113.5(113.5-104)(113.5-84)(113.5-39)}}{39}\normalsize = 78.9431163}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 84 и 39 равна 36.6521611
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 84 и 39 равна 29.6036686
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 84 и 39 равна 78.9431163
Ссылка на результат
?n1=104&n2=84&n3=39