Рассчитать высоту треугольника со сторонами 105, 65 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 65 + 45}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-105)(107.5-65)(107.5-45)}}{65}\normalsize = 25.9971266}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-105)(107.5-65)(107.5-45)}}{105}\normalsize = 16.0934593}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-105)(107.5-65)(107.5-45)}}{45}\normalsize = 37.5514051}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 65 и 45 равна 25.9971266
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 65 и 45 равна 16.0934593
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 65 и 45 равна 37.5514051
Ссылка на результат
?n1=105&n2=65&n3=45
Найти высоту треугольника со сторонами 123, 98 и 82
Найти высоту треугольника со сторонами 124, 119 и 71
Найти высоту треугольника со сторонами 74, 66 и 14
Найти высоту треугольника со сторонами 100, 100 и 61
Найти высоту треугольника со сторонами 103, 81 и 35
Найти высоту треугольника со сторонами 123, 105 и 65
Найти высоту треугольника со сторонами 124, 119 и 71
Найти высоту треугольника со сторонами 74, 66 и 14
Найти высоту треугольника со сторонами 100, 100 и 61
Найти высоту треугольника со сторонами 103, 81 и 35
Найти высоту треугольника со сторонами 123, 105 и 65