Рассчитать высоту треугольника со сторонами 105, 69 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 69 + 42}{2}} \normalsize = 108}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108(108-105)(108-69)(108-42)}}{69}\normalsize = 26.470228}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108(108-105)(108-69)(108-42)}}{105}\normalsize = 17.3947212}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108(108-105)(108-69)(108-42)}}{42}\normalsize = 43.4868031}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 69 и 42 равна 26.470228
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 69 и 42 равна 17.3947212
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 69 и 42 равна 43.4868031
Ссылка на результат
?n1=105&n2=69&n3=42
Найти высоту треугольника со сторонами 81, 75 и 56
Найти высоту треугольника со сторонами 98, 85 и 42
Найти высоту треугольника со сторонами 112, 88 и 88
Найти высоту треугольника со сторонами 125, 93 и 88
Найти высоту треугольника со сторонами 68, 43 и 41
Найти высоту треугольника со сторонами 75, 69 и 62
Найти высоту треугольника со сторонами 98, 85 и 42
Найти высоту треугольника со сторонами 112, 88 и 88
Найти высоту треугольника со сторонами 125, 93 и 88
Найти высоту треугольника со сторонами 68, 43 и 41
Найти высоту треугольника со сторонами 75, 69 и 62