Рассчитать высоту треугольника со сторонами 105, 70 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 70 + 69}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-105)(122-70)(122-69)}}{70}\normalsize = 68.3086871}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-105)(122-70)(122-69)}}{105}\normalsize = 45.5391247}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-105)(122-70)(122-69)}}{69}\normalsize = 69.2986681}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 70 и 69 равна 68.3086871
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 70 и 69 равна 45.5391247
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 70 и 69 равна 69.2986681
Ссылка на результат
?n1=105&n2=70&n3=69
Найти высоту треугольника со сторонами 94, 87 и 63
Найти высоту треугольника со сторонами 108, 97 и 18
Найти высоту треугольника со сторонами 101, 60 и 44
Найти высоту треугольника со сторонами 111, 111 и 13
Найти высоту треугольника со сторонами 72, 55 и 55
Найти высоту треугольника со сторонами 149, 138 и 39
Найти высоту треугольника со сторонами 108, 97 и 18
Найти высоту треугольника со сторонами 101, 60 и 44
Найти высоту треугольника со сторонами 111, 111 и 13
Найти высоту треугольника со сторонами 72, 55 и 55
Найти высоту треугольника со сторонами 149, 138 и 39