Рассчитать высоту треугольника со сторонами 105, 73 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 73 + 64}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-105)(121-73)(121-64)}}{73}\normalsize = 63.0547573}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-105)(121-73)(121-64)}}{105}\normalsize = 43.8380694}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-105)(121-73)(121-64)}}{64}\normalsize = 71.9218326}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 73 и 64 равна 63.0547573
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 73 и 64 равна 43.8380694
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 73 и 64 равна 71.9218326
Ссылка на результат
?n1=105&n2=73&n3=64
Найти высоту треугольника со сторонами 94, 63 и 42
Найти высоту треугольника со сторонами 148, 118 и 40
Найти высоту треугольника со сторонами 116, 116 и 91
Найти высоту треугольника со сторонами 140, 131 и 52
Найти высоту треугольника со сторонами 131, 129 и 41
Найти высоту треугольника со сторонами 139, 138 и 47
Найти высоту треугольника со сторонами 148, 118 и 40
Найти высоту треугольника со сторонами 116, 116 и 91
Найти высоту треугольника со сторонами 140, 131 и 52
Найти высоту треугольника со сторонами 131, 129 и 41
Найти высоту треугольника со сторонами 139, 138 и 47