Рассчитать высоту треугольника со сторонами 105, 93 и 32

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 93 + 32}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-105)(115-93)(115-32)}}{93}\normalsize = 31.1635091}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-105)(115-93)(115-32)}}{105}\normalsize = 27.6019652}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-105)(115-93)(115-32)}}{32}\normalsize = 90.5689482}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 93 и 32 равна 31.1635091
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 93 и 32 равна 27.6019652
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 93 и 32 равна 90.5689482
Ссылка на результат
?n1=105&n2=93&n3=32