Рассчитать высоту треугольника со сторонами 106, 102 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 102 + 27}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-106)(117.5-102)(117.5-27)}}{102}\normalsize = 26.9952787}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-106)(117.5-102)(117.5-27)}}{106}\normalsize = 25.976589}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-106)(117.5-102)(117.5-27)}}{27}\normalsize = 101.982164}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 102 и 27 равна 26.9952787
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 102 и 27 равна 25.976589
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 102 и 27 равна 101.982164
Ссылка на результат
?n1=106&n2=102&n3=27
Найти высоту треугольника со сторонами 132, 91 и 81
Найти высоту треугольника со сторонами 92, 81 и 36
Найти высоту треугольника со сторонами 125, 92 и 75
Найти высоту треугольника со сторонами 96, 77 и 73
Найти высоту треугольника со сторонами 147, 123 и 51
Найти высоту треугольника со сторонами 147, 89 и 74
Найти высоту треугольника со сторонами 92, 81 и 36
Найти высоту треугольника со сторонами 125, 92 и 75
Найти высоту треугольника со сторонами 96, 77 и 73
Найти высоту треугольника со сторонами 147, 123 и 51
Найти высоту треугольника со сторонами 147, 89 и 74