Рассчитать высоту треугольника со сторонами 106, 96 и 88
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 96 + 88}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-106)(145-96)(145-88)}}{96}\normalsize = 82.7962248}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-106)(145-96)(145-88)}}{106}\normalsize = 74.9852602}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-106)(145-96)(145-88)}}{88}\normalsize = 90.3231543}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 96 и 88 равна 82.7962248
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 96 и 88 равна 74.9852602
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 96 и 88 равна 90.3231543
Ссылка на результат
?n1=106&n2=96&n3=88
Найти высоту треугольника со сторонами 145, 93 и 61
Найти высоту треугольника со сторонами 60, 32 и 29
Найти высоту треугольника со сторонами 94, 69 и 51
Найти высоту треугольника со сторонами 102, 86 и 54
Найти высоту треугольника со сторонами 132, 106 и 64
Найти высоту треугольника со сторонами 95, 86 и 86
Найти высоту треугольника со сторонами 60, 32 и 29
Найти высоту треугольника со сторонами 94, 69 и 51
Найти высоту треугольника со сторонами 102, 86 и 54
Найти высоту треугольника со сторонами 132, 106 и 64
Найти высоту треугольника со сторонами 95, 86 и 86