Рассчитать высоту треугольника со сторонами 107, 105 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 105 + 82}{2}} \normalsize = 147}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147(147-107)(147-105)(147-82)}}{105}\normalsize = 76.3151361}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147(147-107)(147-105)(147-82)}}{107}\normalsize = 74.888685}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147(147-107)(147-105)(147-82)}}{82}\normalsize = 97.7206011}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 105 и 82 равна 76.3151361
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 105 и 82 равна 74.888685
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 105 и 82 равна 97.7206011
Ссылка на результат
?n1=107&n2=105&n3=82
Найти высоту треугольника со сторонами 58, 48 и 47
Найти высоту треугольника со сторонами 73, 72 и 58
Найти высоту треугольника со сторонами 109, 70 и 58
Найти высоту треугольника со сторонами 137, 123 и 22
Найти высоту треугольника со сторонами 133, 106 и 68
Найти высоту треугольника со сторонами 138, 119 и 77
Найти высоту треугольника со сторонами 73, 72 и 58
Найти высоту треугольника со сторонами 109, 70 и 58
Найти высоту треугольника со сторонами 137, 123 и 22
Найти высоту треугольника со сторонами 133, 106 и 68
Найти высоту треугольника со сторонами 138, 119 и 77