Рассчитать высоту треугольника со сторонами 107, 105 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 105 + 83}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-107)(147.5-105)(147.5-83)}}{105}\normalsize = 77.0794382}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-107)(147.5-105)(147.5-83)}}{107}\normalsize = 75.6387011}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-107)(147.5-105)(147.5-83)}}{83}\normalsize = 97.5101327}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 105 и 83 равна 77.0794382
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 105 и 83 равна 75.6387011
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 105 и 83 равна 97.5101327
Ссылка на результат
?n1=107&n2=105&n3=83
Найти высоту треугольника со сторонами 140, 108 и 88
Найти высоту треугольника со сторонами 28, 19 и 18
Найти высоту треугольника со сторонами 104, 89 и 74
Найти высоту треугольника со сторонами 88, 88 и 4
Найти высоту треугольника со сторонами 124, 103 и 90
Найти высоту треугольника со сторонами 148, 134 и 94
Найти высоту треугольника со сторонами 28, 19 и 18
Найти высоту треугольника со сторонами 104, 89 и 74
Найти высоту треугольника со сторонами 88, 88 и 4
Найти высоту треугольника со сторонами 124, 103 и 90
Найти высоту треугольника со сторонами 148, 134 и 94