Рассчитать высоту треугольника со сторонами 107, 73 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 73 + 62}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-107)(121-73)(121-62)}}{73}\normalsize = 60.0081811}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-107)(121-73)(121-62)}}{107}\normalsize = 40.9401609}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-107)(121-73)(121-62)}}{62}\normalsize = 70.6547939}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 73 и 62 равна 60.0081811
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 73 и 62 равна 40.9401609
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 73 и 62 равна 70.6547939
Ссылка на результат
?n1=107&n2=73&n3=62
Найти высоту треугольника со сторонами 147, 142 и 25
Найти высоту треугольника со сторонами 144, 100 и 68
Найти высоту треугольника со сторонами 45, 38 и 34
Найти высоту треугольника со сторонами 79, 78 и 37
Найти высоту треугольника со сторонами 78, 53 и 27
Найти высоту треугольника со сторонами 99, 80 и 47
Найти высоту треугольника со сторонами 144, 100 и 68
Найти высоту треугольника со сторонами 45, 38 и 34
Найти высоту треугольника со сторонами 79, 78 и 37
Найти высоту треугольника со сторонами 78, 53 и 27
Найти высоту треугольника со сторонами 99, 80 и 47