Рассчитать высоту треугольника со сторонами 108, 100 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 100 + 36}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-108)(122-100)(122-36)}}{100}\normalsize = 35.952947}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-108)(122-100)(122-36)}}{108}\normalsize = 33.2897658}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-108)(122-100)(122-36)}}{36}\normalsize = 99.8692973}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 100 и 36 равна 35.952947
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 100 и 36 равна 33.2897658
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 100 и 36 равна 99.8692973
Ссылка на результат
?n1=108&n2=100&n3=36
Найти высоту треугольника со сторонами 140, 140 и 125
Найти высоту треугольника со сторонами 111, 77 и 50
Найти высоту треугольника со сторонами 129, 67 и 63
Найти высоту треугольника со сторонами 128, 93 и 50
Найти высоту треугольника со сторонами 106, 98 и 68
Найти высоту треугольника со сторонами 122, 117 и 73
Найти высоту треугольника со сторонами 111, 77 и 50
Найти высоту треугольника со сторонами 129, 67 и 63
Найти высоту треугольника со сторонами 128, 93 и 50
Найти высоту треугольника со сторонами 106, 98 и 68
Найти высоту треугольника со сторонами 122, 117 и 73