Рассчитать высоту треугольника со сторонами 108, 105 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 105 + 90}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-108)(151.5-105)(151.5-90)}}{105}\normalsize = 82.690511}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-108)(151.5-105)(151.5-90)}}{108}\normalsize = 80.3935524}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-108)(151.5-105)(151.5-90)}}{90}\normalsize = 96.4722629}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 105 и 90 равна 82.690511
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 105 и 90 равна 80.3935524
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 105 и 90 равна 96.4722629
Ссылка на результат
?n1=108&n2=105&n3=90
Найти высоту треугольника со сторонами 122, 95 и 42
Найти высоту треугольника со сторонами 121, 107 и 54
Найти высоту треугольника со сторонами 76, 55 и 22
Найти высоту треугольника со сторонами 45, 29 и 18
Найти высоту треугольника со сторонами 77, 77 и 67
Найти высоту треугольника со сторонами 136, 126 и 102
Найти высоту треугольника со сторонами 121, 107 и 54
Найти высоту треугольника со сторонами 76, 55 и 22
Найти высоту треугольника со сторонами 45, 29 и 18
Найти высоту треугольника со сторонами 77, 77 и 67
Найти высоту треугольника со сторонами 136, 126 и 102