Рассчитать высоту треугольника со сторонами 108, 108 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 108 + 21}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-108)(118.5-108)(118.5-21)}}{108}\normalsize = 20.9005167}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-108)(118.5-108)(118.5-21)}}{108}\normalsize = 20.9005167}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-108)(118.5-108)(118.5-21)}}{21}\normalsize = 107.488371}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 108 и 21 равна 20.9005167
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 108 и 21 равна 20.9005167
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 108 и 21 равна 107.488371
Ссылка на результат
?n1=108&n2=108&n3=21
Найти высоту треугольника со сторонами 134, 110 и 27
Найти высоту треугольника со сторонами 103, 99 и 85
Найти высоту треугольника со сторонами 69, 46 и 30
Найти высоту треугольника со сторонами 76, 76 и 66
Найти высоту треугольника со сторонами 122, 85 и 58
Найти высоту треугольника со сторонами 65, 57 и 12
Найти высоту треугольника со сторонами 103, 99 и 85
Найти высоту треугольника со сторонами 69, 46 и 30
Найти высоту треугольника со сторонами 76, 76 и 66
Найти высоту треугольника со сторонами 122, 85 и 58
Найти высоту треугольника со сторонами 65, 57 и 12