Рассчитать высоту треугольника со сторонами 108, 71 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 71 + 71}{2}} \normalsize = 125}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{125(125-108)(125-71)(125-71)}}{71}\normalsize = 70.120479}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{125(125-108)(125-71)(125-71)}}{108}\normalsize = 46.0977223}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{125(125-108)(125-71)(125-71)}}{71}\normalsize = 70.120479}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 71 и 71 равна 70.120479
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 71 и 71 равна 46.0977223
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 71 и 71 равна 70.120479
Ссылка на результат
?n1=108&n2=71&n3=71
Найти высоту треугольника со сторонами 127, 122 и 64
Найти высоту треугольника со сторонами 110, 68 и 57
Найти высоту треугольника со сторонами 148, 122 и 95
Найти высоту треугольника со сторонами 126, 85 и 81
Найти высоту треугольника со сторонами 69, 67 и 6
Найти высоту треугольника со сторонами 109, 86 и 34
Найти высоту треугольника со сторонами 110, 68 и 57
Найти высоту треугольника со сторонами 148, 122 и 95
Найти высоту треугольника со сторонами 126, 85 и 81
Найти высоту треугольника со сторонами 69, 67 и 6
Найти высоту треугольника со сторонами 109, 86 и 34