Рассчитать высоту треугольника со сторонами 108, 76 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 76 + 39}{2}} \normalsize = 111.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111.5(111.5-108)(111.5-76)(111.5-39)}}{76}\normalsize = 26.3736986}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111.5(111.5-108)(111.5-76)(111.5-39)}}{108}\normalsize = 18.5592694}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111.5(111.5-108)(111.5-76)(111.5-39)}}{39}\normalsize = 51.3948999}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 76 и 39 равна 26.3736986
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 76 и 39 равна 18.5592694
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 76 и 39 равна 51.3948999
Ссылка на результат
?n1=108&n2=76&n3=39
Найти высоту треугольника со сторонами 53, 49 и 37
Найти высоту треугольника со сторонами 103, 57 и 50
Найти высоту треугольника со сторонами 121, 97 и 73
Найти высоту треугольника со сторонами 83, 66 и 64
Найти высоту треугольника со сторонами 119, 116 и 116
Найти высоту треугольника со сторонами 120, 119 и 109
Найти высоту треугольника со сторонами 103, 57 и 50
Найти высоту треугольника со сторонами 121, 97 и 73
Найти высоту треугольника со сторонами 83, 66 и 64
Найти высоту треугольника со сторонами 119, 116 и 116
Найти высоту треугольника со сторонами 120, 119 и 109