Рассчитать высоту треугольника со сторонами 108, 79 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 79 + 67}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-108)(127-79)(127-67)}}{79}\normalsize = 66.7387102}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-108)(127-79)(127-67)}}{108}\normalsize = 48.8181306}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-108)(127-79)(127-67)}}{67}\normalsize = 78.691912}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 79 и 67 равна 66.7387102
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 79 и 67 равна 48.8181306
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 79 и 67 равна 78.691912
Ссылка на результат
?n1=108&n2=79&n3=67
Найти высоту треугольника со сторонами 86, 84 и 56
Найти высоту треугольника со сторонами 124, 74 и 65
Найти высоту треугольника со сторонами 69, 57 и 23
Найти высоту треугольника со сторонами 134, 125 и 34
Найти высоту треугольника со сторонами 108, 98 и 14
Найти высоту треугольника со сторонами 123, 111 и 56
Найти высоту треугольника со сторонами 124, 74 и 65
Найти высоту треугольника со сторонами 69, 57 и 23
Найти высоту треугольника со сторонами 134, 125 и 34
Найти высоту треугольника со сторонами 108, 98 и 14
Найти высоту треугольника со сторонами 123, 111 и 56