Рассчитать высоту треугольника со сторонами 108, 94 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 94 + 62}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-108)(132-94)(132-62)}}{94}\normalsize = 61.7640188}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-108)(132-94)(132-62)}}{108}\normalsize = 53.757572}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-108)(132-94)(132-62)}}{62}\normalsize = 93.6422221}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 94 и 62 равна 61.7640188
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 94 и 62 равна 53.757572
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 94 и 62 равна 93.6422221
Ссылка на результат
?n1=108&n2=94&n3=62
Найти высоту треугольника со сторонами 99, 84 и 40
Найти высоту треугольника со сторонами 138, 85 и 80
Найти высоту треугольника со сторонами 98, 94 и 15
Найти высоту треугольника со сторонами 76, 67 и 46
Найти высоту треугольника со сторонами 147, 134 и 133
Найти высоту треугольника со сторонами 131, 103 и 101
Найти высоту треугольника со сторонами 138, 85 и 80
Найти высоту треугольника со сторонами 98, 94 и 15
Найти высоту треугольника со сторонами 76, 67 и 46
Найти высоту треугольника со сторонами 147, 134 и 133
Найти высоту треугольника со сторонами 131, 103 и 101