Рассчитать высоту треугольника со сторонами 109, 76 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 76 + 47}{2}} \normalsize = 116}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116(116-109)(116-76)(116-47)}}{76}\normalsize = 39.3957125}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116(116-109)(116-76)(116-47)}}{109}\normalsize = 27.4685702}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116(116-109)(116-76)(116-47)}}{47}\normalsize = 63.7037053}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 76 и 47 равна 39.3957125
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 76 и 47 равна 27.4685702
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 76 и 47 равна 63.7037053
Ссылка на результат
?n1=109&n2=76&n3=47
Найти высоту треугольника со сторонами 108, 80 и 35
Найти высоту треугольника со сторонами 122, 119 и 83
Найти высоту треугольника со сторонами 85, 80 и 52
Найти высоту треугольника со сторонами 114, 108 и 29
Найти высоту треугольника со сторонами 118, 112 и 80
Найти высоту треугольника со сторонами 148, 121 и 86
Найти высоту треугольника со сторонами 122, 119 и 83
Найти высоту треугольника со сторонами 85, 80 и 52
Найти высоту треугольника со сторонами 114, 108 и 29
Найти высоту треугольника со сторонами 118, 112 и 80
Найти высоту треугольника со сторонами 148, 121 и 86