Рассчитать высоту треугольника со сторонами 109, 80 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 80 + 68}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-109)(128.5-80)(128.5-68)}}{80}\normalsize = 67.7887202}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-109)(128.5-80)(128.5-68)}}{109}\normalsize = 49.7531891}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-109)(128.5-80)(128.5-68)}}{68}\normalsize = 79.7514355}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 80 и 68 равна 67.7887202
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 80 и 68 равна 49.7531891
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 80 и 68 равна 79.7514355
Ссылка на результат
?n1=109&n2=80&n3=68
Найти высоту треугольника со сторонами 106, 96 и 41
Найти высоту треугольника со сторонами 125, 92 и 52
Найти высоту треугольника со сторонами 111, 102 и 39
Найти высоту треугольника со сторонами 149, 126 и 106
Найти высоту треугольника со сторонами 149, 149 и 17
Найти высоту треугольника со сторонами 149, 105 и 61
Найти высоту треугольника со сторонами 125, 92 и 52
Найти высоту треугольника со сторонами 111, 102 и 39
Найти высоту треугольника со сторонами 149, 126 и 106
Найти высоту треугольника со сторонами 149, 149 и 17
Найти высоту треугольника со сторонами 149, 105 и 61