Рассчитать высоту треугольника со сторонами 109, 86 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 86 + 63}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-109)(129-86)(129-63)}}{86}\normalsize = 62.9285309}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-109)(129-86)(129-63)}}{109}\normalsize = 49.6500335}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-109)(129-86)(129-63)}}{63}\normalsize = 85.902439}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 86 и 63 равна 62.9285309
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 86 и 63 равна 49.6500335
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 86 и 63 равна 85.902439
Ссылка на результат
?n1=109&n2=86&n3=63
Найти высоту треугольника со сторонами 140, 77 и 75
Найти высоту треугольника со сторонами 130, 113 и 77
Найти высоту треугольника со сторонами 72, 65 и 58
Найти высоту треугольника со сторонами 38, 30 и 29
Найти высоту треугольника со сторонами 108, 99 и 80
Найти высоту треугольника со сторонами 130, 126 и 19
Найти высоту треугольника со сторонами 130, 113 и 77
Найти высоту треугольника со сторонами 72, 65 и 58
Найти высоту треугольника со сторонами 38, 30 и 29
Найти высоту треугольника со сторонами 108, 99 и 80
Найти высоту треугольника со сторонами 130, 126 и 19