Рассчитать высоту треугольника со сторонами 109, 92 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 92 + 89}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-109)(145-92)(145-89)}}{92}\normalsize = 85.5676034}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-109)(145-92)(145-89)}}{109}\normalsize = 72.2221973}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-109)(145-92)(145-89)}}{89}\normalsize = 88.4519046}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 92 и 89 равна 85.5676034
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 92 и 89 равна 72.2221973
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 92 и 89 равна 88.4519046
Ссылка на результат
?n1=109&n2=92&n3=89
Найти высоту треугольника со сторонами 146, 127 и 29
Найти высоту треугольника со сторонами 144, 135 и 112
Найти высоту треугольника со сторонами 90, 84 и 57
Найти высоту треугольника со сторонами 125, 109 и 96
Найти высоту треугольника со сторонами 113, 105 и 49
Найти высоту треугольника со сторонами 131, 118 и 72
Найти высоту треугольника со сторонами 144, 135 и 112
Найти высоту треугольника со сторонами 90, 84 и 57
Найти высоту треугольника со сторонами 125, 109 и 96
Найти высоту треугольника со сторонами 113, 105 и 49
Найти высоту треугольника со сторонами 131, 118 и 72