Рассчитать высоту треугольника со сторонами 109, 97 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 97 + 23}{2}} \normalsize = 114.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114.5(114.5-109)(114.5-97)(114.5-23)}}{97}\normalsize = 20.704842}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114.5(114.5-109)(114.5-97)(114.5-23)}}{109}\normalsize = 18.4254099}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114.5(114.5-109)(114.5-97)(114.5-23)}}{23}\normalsize = 87.3204206}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 97 и 23 равна 20.704842
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 97 и 23 равна 18.4254099
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 97 и 23 равна 87.3204206
Ссылка на результат
?n1=109&n2=97&n3=23
Найти высоту треугольника со сторонами 95, 65 и 32
Найти высоту треугольника со сторонами 142, 111 и 81
Найти высоту треугольника со сторонами 129, 122 и 55
Найти высоту треугольника со сторонами 139, 133 и 103
Найти высоту треугольника со сторонами 86, 74 и 68
Найти высоту треугольника со сторонами 76, 60 и 26
Найти высоту треугольника со сторонами 142, 111 и 81
Найти высоту треугольника со сторонами 129, 122 и 55
Найти высоту треугольника со сторонами 139, 133 и 103
Найти высоту треугольника со сторонами 86, 74 и 68
Найти высоту треугольника со сторонами 76, 60 и 26